quotient groupoid - traducción al ruso
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

quotient groupoid - traducción al ruso

CATEGORY WHERE EVERY MORPHISM IS INVERTIBLE; GENERALIZATION OF A GROUP
Groupoids; Brandt groupoid; Transformation groupoid; Groupoid (category theory)

quotient groupoid      

математика

фактор-группоид

groupoid         

общая лексика

группоид

quotient topology         
  • For example, <math>[0,1]/\{0,1\}</math> is homeomorphic to the circle <math>S^1.</math>
  • frameless
TOPOLOGICAL SPACE CONSISTING OF EQUIVALENCE CLASSES OF POINTS IN ANOTHER TOPOLOGICAL SPACE
Quotient topology; Quotient (topology); Quotient map; Identification space; Identification map; Quotient topological space; Gluing (topology); Identifiation map; Hereditarily quotient map

математика

фактор-топология

Definición

IQ
(IQs)
Your IQ is your level of intelligence, as indicated by a special test that you do. IQ is an abbreviation for 'intelligence quotient'. Compare EQ
.
His IQ is above average.
N-VAR: usu with supp

Wikipedia

Groupoid

In mathematics, especially in category theory and homotopy theory, a groupoid (less often Brandt groupoid or virtual group) generalises the notion of group in several equivalent ways. A groupoid can be seen as a:

  • Group with a partial function replacing the binary operation;
  • Category in which every morphism is invertible. A category of this sort can be viewed as augmented with a unary operation on the morphisms, called inverse by analogy with group theory. A groupoid where there is only one object is a usual group.

In the presence of dependent typing, a category in general can be viewed as a typed monoid, and similarly, a groupoid can be viewed as simply a typed group. The morphisms take one from one object to another, and form a dependent family of types, thus morphisms might be typed g : A B {\displaystyle g:A\rightarrow B} , h : B C {\displaystyle h:B\rightarrow C} , say. Composition is then a total function: : ( B C ) ( A B ) A C {\displaystyle \circ :(B\rightarrow C)\rightarrow (A\rightarrow B)\rightarrow A\rightarrow C} , so that h g : A C {\displaystyle h\circ g:A\rightarrow C} .

Special cases include:

  • Setoids: sets that come with an equivalence relation,
  • G-sets: sets equipped with an action of a group G {\displaystyle G} .

Groupoids are often used to reason about geometrical objects such as manifolds. Heinrich Brandt (1927) introduced groupoids implicitly via Brandt semigroups.

¿Cómo se dice quotient groupoid en Ruso? Traducción de &#39quotient groupoid&#39 al Ruso